

NMRA 2019
Salt Lake City

Signaling with LCC - Overview
(Layout Command & Control)

Compiled by: Dick Bronson
RR-CirKits, Inc.

Signaling with LCC.
Part 1 (overview)

www.rr-cirkits.com/clinics/NMRA-2019-Signaling with LCC-A.pdf
Part 2 (details)

www.rr-cirkits.com/clinics/NMRA-2019-Signaling with LCC-B.pdf

What is LCC?
LCC is an information highway

for your model railroad layout

What is LCC?
 LCC is a common language for layout

elements to talk to each other

● Signals
● Turnouts
● Detectors
● Lights
● Panels
● PCs / Smart Phones

● Boosters
● Command Stations
● Throttles
● Power Managers
● Trains
● etc…

What is LCC NOT?

LCC does NOT replace DCC.
On the track – DCC

Beside the track – LCC

LCC is not dependent on DCC,

can run on DC or Märklin layouts

not locked to the DCC manufacturer

Why LCC?

 The critical role of software and its importance to
our hobby, both now and for years to come,
cannot be overstated. Our new digital world and
its eventual successors will underpin much of our
future innovations across a wide range of
technological advancements.

 The ability of LCC nodes to be quickly and easily
upgraded over the bus without the need to return
them to the manufacturer, purchase replacement
chips, or to even access them physically is a key
new benefit.

Why LCC?

 I once heard it said that LCC was a solution
looking for a problem, because we already
had many ways to control our layouts.

 That is true, and it points out the problem. We
have LocoNet, CMRI, XpressNet, MERG,
plus other proprietary methods to connect
our devices.

 Not one of these options can connect to
another. (except via JMRI and a central
computer)

Why LCC?

 Many of us simply use the DCC itself to control devices.
That has its own problems.

 First and most restricting, DCC is a one way street. Has
anyone here ever seen a DCC connected block detector,
fascia control button, turnout position feedback contact,
or any other input?

 Second, DCC does have a fixed, limited, bandwidth.
Control traffic competes with the repetitive locomotive
control information. This is probably not an issue on a
4x8 class layout, but not a good basis for expansion of a
large sized layout over the next 20-30 years.

Why LCC?

 DCC is a Master–Slave system. This means that
there is really no practical way for more than a
single command station to control any given
layout.

 DCC has a fixed address space. This was seen to be
sufficient in the 20th century when it was
designed, but today folks run into the limits, and
tomorrow requires looking for new tools.

 Any single LCC node has a larger reserved address
space than many DCC systems can muster.

 What about CMRI, XpressNet, MERG,
plus the LocoNet and other proprietary
methods used to connect our devices?

 Most of these solutions originated due to
the difficulty in using the DCC bus for
any input information.

 Some are Master–Slave and others have
limited accessibility due to licensing.

Other Options

 The NMRA decided a number of years
ago (2007) to sponsor an open (license
free) method to interface to your layout.
The intent was that, like the NMRA
DCC standards, many manufacturers
would be able to build layout accessory
products that will interchange as freely
as is now true for DCC mobile
decoders.

A solution is proposed

 The bus must use license free commercial standards
for its communications as much as is possible.

 It should be robust and viable even into the next
generation of electronic products.

 It should be a peer-peer design with no
requirements for any central control station.

 Any two devices from any manufacturers must be
able to exchange data.

 The Open LCB group was chosen to develop this.

A solution is proposed

 The result was a set of protocols that can be sent
over any media. For example, EtherNet, Wi-Fi,
CAN (Control Area Network), and others. (some
have said tin cans and string, but don’t believe it)

 The NMRA calls this Open LCB standard LCC.
Layout Command and Control. LCC is NOT a
replacement for DCC. (unless you consider it
replacing DCC accessory decoders)

 LCC can run along side of DCC, AC, DC, DCS,
TMCC, RailPro, Battery power, etc. It is not a
way to power your trains, it is a way to control
your entire layout.

LCC Basic Concepts

 One of the early assumptions made by the
OpenLCB developers was that the nodes should
be peer-peer, globally unique, and self describing.

 Without these features LCC has little to
differentiate itself from other legacy solutions.
Granted it can be faster, and more reliable, but
that is not in itself any reason to make a
fundamental change in how we do things.

LCC Basic Concepts -
Peer-Peer

 In general networks come in two varieties. They are
Master–Slave and
Peer–Peer

 As implied, Master–Slave has a master device that
controls all communications with the remote
nodes. (slaves) Usually this is done in a round
robin method where the master unit polls each
slave in turn to send/receive data.

 Peer–Peer on the other hand allows each node to
communicate directly with every other node on
an equal footing.

LCC Basic Concepts -
Peer-Peer

 The advantage of a Master–Slave network is that
the master controls the network timing and there
are no collisions to detect and/or resolve. The big
disadvantage is that nodes can not know the status
of any other nodes. The (single) master device
decides what will be done with all information.

 The advantage of a Peer–Peer network is that
any/every node can watch and/or act on
information from any other node. The
disadvantage is that each node needs to monitor
for any message conflicts and resolve them.

LCC Basic Concepts -
Globally Unique

 In addition, every legacy model railroad control
network that I am aware of is plagued by an
identity crisis. To communicate on a network the
first order of business is to give each device an
”address”. This is required in order to create a
sense of identity and give order to network
communications. Usually this is the first step in
configuration. For example, you are not allowed
to simply plop down a new locomotive on a
layout and expect it to operate in an independent
manner without first assigning it a unique (to that
layout) address.

LCC Basic Concepts -
Globally Unique

 The OpenLCB design folks recognized this flaw,
and established an addressing convention large
enough to allow factory preassigned globally
unique addresses to each potential LCC node,
world wide. Each NMRA DCC manufacturer
could build over 16,000,000 nodes before they
will run out of their own unique addresses and
need to apply to the NMRA for a new address
range. I think that the OpenLCB guys have this
requirement covered for long enough that I don’t
need to be worried about it.

LCC Basic Concepts -
Globally Unique

 Some of you may be old enough to
remember when adding a serial
port or printer port to your
computer required you to set
address switches and IRQ option
jumpers on the I/O board.

 Is there anyone here today that did that with the
latest computer that they purchased?

 Is there anyone here today that had to assign the
address of the latest piece of model railroad
electronics that they purchased? Enough said...

LCC Basic Concepts -
Self Describing

 When I add a new device to my
modern computer, I expect it
to automatically show up in
the device manager as seen
here.

 Why shouldn’t we
expect the same thing
when we add a new
node to our layout?

Now, with LCC, that
is a 21st century
reality.

LCC Basic Concepts -
Self Describing

 With LCC you don’t tell the system what hardware you
have added. The system tells
you what hardware you have
added, what you have named
it, and what capabilities it has.

 With DecoderPro if you want to
program a decoder you need
to first find the correct
”decoder file” and then place
the decoder in programming
mode, maybe with a jumper
or putting it on a dedicated
’programming’ track.

LCC Basic Concepts -
Self Describing

 With LCC you simply select ”Open Configuration dialog” and
all required information is read
from the node itself.

 This opens a DecoderPro like window
that allows you to make changes.

LCC Basic Concepts -
Event driven

 ”Event driven” means that the nodes communicate with one
another by sending messages whenever something happens.

The event messages look like this, but you didn’t really need
to know that, anymore than you need to know the format or
content of the messages that your car’s O2 sensor uses when
it sends messages to the ECU. If there is anything to
remember, it is that 02.01.57.10.00.0B.00.30
(144,492,389,284,380,720) is a really large number that isn’t
in any immediate danger of causing conflicts with other
events from other devices on your layout.

LCC Basic Concepts -
Event driven

 I will repeat this bottom line again here. EventIDs
are simply magic numbers that represent your
information on the bus, or over the air. There is
no reason that you should ever need to type one
out manually. There is little if any reason (other
than curiosity) that you would ever need to know
any details of what they mean. (which isn’t a
whole lot anyway)

LCC Basic Concepts -
Event driven

 Its the Event ma'am, just the Event.
 In previous control systems that use a bus and

events, (e.g. LocoNet and in a lesser sense CMRI)
the events or messages sent on the bus have two
parts, first an identifier number (address), and
second the message type. This follows the
original code line concept where each event was a
hard coded station number plus one or more
commands. For example: turnout #23 set normal.

LCC Basic Concepts -
Event driven

 This is:

1. a Turnout command
2. for station #23
3. set to normal

 A matching command with a predefined one bit different
would mean turnout #23 set to reverse. Another one bit
change would create turnout #24 set to normal etc.

 Sometimes the size of the DCC command space and the
protocol design limits the number of possible options to a
predefined set. (e.g. 2048 turnouts, 4096 sensors, etc.)

LCC Basic Concepts -
Event driven

 For example turnouts only have two options,
normal and reverse. If you have a three way
turnout, (very rare on the prototype) sorry, you
need to think of it as 2 two position turnouts.
Have a three color signal, sorry, you need to think
of that as either three different on, off, messages,
(CMRI) or else combine two 2 position messages.
(LocoNet) What about a more typical eastern US
speed signal with 5, 6, or even more aspects?

LCC Basic Concepts -
Event driven

 In the LCC world an event has no predefined meanings.
None, Keiner, Nada! An LCC event simply says;
’something has happened’, or ’something should
happen.’ How it is defined is 100% up to you, the user.
In our previous example it could still mean turnout #23
set normal. However with LCC 'turnout #23' is just what
you call it on your layout, not that it was pin 23 on some
brand of hardware controller. Set normal just means that
the event moves the turnout to normal. Undoubtedly you
will want another event to move the turnout back,
however that will be a completely different event with a
different meaning. (e.g. turnout #23 set reverse)

 Producer - Consumer You will probably hear LCC folks throwing
around terms like Producer and Consumer. They aren't talking
about a big business takeover. They are just trying to sound
educated. <G> The Producer-Consumer control concept is used for
process controls and software queuing.

 Producer simply means that some device can create (produce) an
Event. Some examples might be a push button or block detector.

 Consumer just means that some device can respond to (consume)
an Event. It could be a lamp, a turnout driver, or anything else
that you can control.

 Events can have from 1 to many Producers. Events can have from
0 to many Consumers. Events are simply messages on the bus
that say that something has happened or should happen.

http://openlcb.org/trunk/documents/notes/ProducerConsumerModel.html

LCC Basic Concepts -
Producer Consumer

To elaborate a little bit. For an event to happen something must have
sent it. Therefor there has to be at least one producer. In the LCC world
it is possible for many different Producers to create the same event. For
example you might want to have turnout control buttons track side and
on a remote panel. Thus the statement that every Event has one or more
producers.

Producer

 Consumer

LCC Basic Concepts -
Producer Consumer

LCC driving Signals

 Enough about LCC Basics.
Today you are here to see how LCC can be used for
driving signals on your layout.

+ =

LCC driving Signals
 Well, actually its more like this.

 Nobody said it wouldn’t take wiring, but note that its all localized.

LCC driving Signals

 Application to Signals
Signaling usually requires more logic than can be
handled via simple Events, e.g. occupancy, turnout
position, look ahead to the next signals, etc. However
a signal controller could be designed to listen to all of
the appropriate Events and fully control the signal
aspects. Note that it's also useful for a signal system
to emit (produce) Events for each aspect change so
that e.g. a control panel can mirror the appearance of
the on-layout signals, or so that the next signal can
know its aspect.

LCC driving Signals

 In the following examples we will compare
different methods of controlling signals.
This varies from individual LEDs to a full
blown track side control point.

 Signals via individual lamp drivers
 You can connect the lamps of a signal head to individual Consumers:

 This is a powerful but complicated approach. It requires that the controller
individually turn each lamp on or off. This can cause excessive control
traffic and that latency causes poor timing of flashing signals. There is
also a cost/complexity trade off where lower cost drivers (more outputs
per board) requires more wiring. Typically simple drivers lack special
effects like fading and flashing.

 This is the method used by CMRI.

 Signals via individual head drivers
You can also control signals with Events for the specific colors or functions

of a single head.

 This method requires less command traffic than the previous one. However,
if the controller does not know how to flash the signals, it may still result
in constant streams of messages to be able to show flashing aspects. The
Digitrax SE8c falls into this category. It normally only displays Green,
Yellow, Red, and Dark. To show ’Flash Y’ you need to alternate
between sending Yellow and sending Dark. Got Lunar?

 Signals via aspect drivers
You can control an entire signal mast with just one Event for each high-

level aspect of the signaling system.

 This method requires the minimum amount of command traffic to control
the signals themselves. However it still requires an external controller or
a program such as JMRI to monitor the layout and calculate the proper
aspects. The Team Digital SHD2, Signalist SC1, and RR-CirKits
SignalMan in NMRA Signal Aspect mode fall into this category.

 Signals via control point drivers
You could also control an entire interlocking with just single Events for

each high-level condition of the signaling system including turnout
position.

 This method is similar to the signal aspect driver, but includes turnout
control and possibly even occupancy detection on the same node.
However it still requires an external controller or program such as JMRI
to calculate the proper aspects. The original RR-CirKits LNCP is similar
to this option.

http://openlcb.org/trunk/documents/notes/ProducerConsumerModel.html

 Integrated Signals
In each of the examples above, the signal controller uses (consumes) Events that

directly control the appearances of the signals.

 It's also possible to build a signal controller that watches all related status Events
from the railroad and CTC panel and makes independent decisions about the
proper signal states and appearances. This type of controller would be able to
control its signals without any external computer involvement.

Configuration of LCC nodes

 One of the key new concepts in the LCC protocol is
that, not only the configuration, but the ’decoder
file’ (in JMRI terms) itself should reside in the
LCC node. This is an important change from the
status quo.

 Originally hardware had a fixed purpose. Each
required its own dedicated connections. Lionel
crossing gates flashed with contacts triggered by
the passing wheels. (blink-blink....blink-blink....)

Configuration of LCC nodes

 Then some devices were connected to a bus. (or
track) This required assigning addresses or
channels. The usual solution for addressing was
to include a set of jumpers or switches for the
selection. In some cases it was a plug with
different component values.

 As electronics improved the selection of addresses
was moved into the device code itself. An
example that we are all familiar with is modern
DCC mobile decoders.

 One of downsides of this new method is that our
decoders now need to be configured with a new
(non default) address. That itself was automated
by some manufacturers, but it soon became
evident that something more was needed than
simple interactions through a hand held throttle.
Some of today’s new decoders have 1000 or more
values (Cvs) to configure.

Configuration of LCC nodes

 JMRI and other programs have come to the rescue,
but the decoders are now so complex that a
’decoder file’ is required for each locomotive and
stored on a computer to help keep track of
changes. The DCC specification does not include
an easy way to read information out from a
decoder except very laboriously and slowly over
a special connection. (called a programming
track)

Configuration of LCC nodes

 This manual address assignment was deemed to be too error
prone and inflexible for the new LCC equipment. Two key
changes were required.

 The first was that any LCC node could be configured in place
on the layout at any time with no need to access it for jumper
changes or button presses.

 The second was that any information required to configure a
node should reside in the node itself, and be available to any
configuration tool connected to the network. Now any node
could be configured in one place and moved to another with
all the information moving with the node itself. This means
not only configuration values but user names and comments
as well.

Configuration of LCC nodes

 As previously mentioned, a key design choice of LCC was
that the manufacturer would assign a node ID during
manufacturing in a manner that prevents any duplication
of addresses…. Ever, …. anywhere! (similar to how
Ethernet MAC addresses work)

 This manufacturer based address assignment has another
unforeseen benefit. Any automatic or user linking of two
LCC nodes no longer needs to know anything at all about
the rest of the network in order to prevent unintended
conflicts We will take advantage of this for signaling.

 Adding a new LCC node to the layout will never conflict
with any already installed devices.

Configuration of LCC nodes

The basic signal logic overview.

● Rule logic is calculated using layout status information and next speed.

● The resulting ‘Rules’ are converted to lighted lamps, effects, and speeds.

Signal Logic Example

Block
Detect

Turnout
Position

Logic

Occupancy

Norm/Rev
Rule to
Aspect

Rules

Next
Speed

Speed

Lamps
Effects

Appearance

This
Speed

Speed

From Next Signal

To
previous
Signal

Mast

Drivers

 Signal Logic
 The heart of a signal controller is that it watches all related

status Events from the railroad and CTC panel, (if used) and
makes independent decisions about the proper signal states
and appearances. It is the logic brain for the signal.

 The signal controller may be built into each signal board. It may
be an external computer program like JMRI. It may be a
dedicated logic board similar to the Team Digital CSC.
(Central Signal Controller) It may be created from general
purpose logic built into various nodes on the control bus. This
is how our RR-CirKits LCC products work.

Signaling Requirements

 Rule to Aspect conversion
Signal rules such as ’Stop’, ‘Approach’, ’Clear’, Etc. are displayed differently on

different types of signals. A simple way to make these conversions is needed.

 My point of course is that a signal board designed for may not work for you.

Signaling Requirements

In typical existing systems the green items are part of the layout hardware, and
the red items are taken care of by an attached computer.

Items such as Lamp Effects are difficult or impossible for the computer to
accomplish well, due to interface latency and driver restrictions.

Signal Logic Example

Block
Detect

Turnout
Position

Logic

Occupancy

Norm/Rev
Rule to
Aspect

Rules

Next
Speed

Speed

Lamps
Effects

Appearance

This
Speed

Speed

From Next Signal

To
previous
Signal

Mast

Drivers

 Track Circuits
In order to properly calculate signal rules the signal logic must know the allowed

speed upon approaching the next signal along each route. Prototype speed
information is often sent from one mast to another over track circuits.

 Effects
Signal lamps usually do not simply blink on or off as they change. Effects

simulating incandescent lamp fade and other visual artifacts can increase the
realism of our model signals.

 Brightness
If we can fade our signals, then we should also be able to adjust their brightness to

make them visually match between different colors.

Signaling Requirements

With the Signal LCC all of the control functions required for signaling exist
locally. Light blue items are on a daughter card or different nodes.

If you want to off load (or monitor) any function with a computer you may do
so by intercepting the LCC EventIDs that link sections with each other.

Signal Logic Example

Block
Detect

Turnout
Position

Logic

Occupancy

Norm/Rev
Rule to
Aspect

Rules

Next
Speed

Speed

Lamps
Effects

Appearance

This
Speed

Speed

From Next Signal

To
previous
Signal

Mast

Drivers

 Signal Logic
 In order to build a signal controller that watches all related status

Events from the railroad and the CTC panel, and makes
independent decisions about the proper signal states and
appearances, it must contain internal logic. This logic must either
be user configured or else it must understand all possible signaling
rules.

 Triggering the evaluation of a conditional is done when any
monitored event is seen. There are two trigger options. In the first
option evaluation of a conditional is only done if the monitored
event actually changes the state of the variable. In the second case
the evaluation is done when ever the event is seen, even if there is
no resulting change to a variable. This allows repeated single
events to trigger a conditional multiple times.

Signal Logic

 We will cover more details of signal logic in the next session.

Signal Logic

 With the recent addition of an option to place the
DCC rail sync information on an otherwise
unused pair, CAN can now support smart
boosters.

 I have referred to the CAN version of LCC.
Remember that the LCC protocol is also capable
of being used over different systems, Ethernet,
and Wi-Fi also being developed for use by other
LCC developers.

Currently Available LCC
Hardware

The Future of LCC

 *Smart Detector, Railcom, Circuit Breaker, Reversers

 Simple Detector, CT coil based.

 Stall Motor Driver (Support for ganged Tortoises, MP1, etc.)

 Dual Coil Solenoid Driver.

 *Servo controllers.

 *LocoNet to LCC Gateway. (LCC support for existing products)

 *Ethernet LCC Links.

 *Wireless LCC Links.

 *Throttles

 Smart Boosters, *Command Stations.

* denotes LCC nodes currently under development in 2019

 The original CDI configuration tool was created as a part of
JMRI. www.jmri.org

Select OpenLCB and choose ’Configure Nodes’

Next open the node you need to configure.

Open ’Configuration dialog’.

 The CDI window will then open.

Because LCC is an open standard anyone can develop tools for it. One such developer is
Robert Heller of Deepwoods Software. This is part of his model railroad software package.
http://www.deepsoft.com/home/products/modelrailroadsystem/downloadmr/
Run the OpenLCB tool.

If you are using the LCC Buffer-USB
as your interface device, then select
’Grid Connect CAN over USB’ .

Next select the proper COM port. (this
example is on Linux)

Once you click on ’Open’ a similar window to the one
you saw in JMRI will open. The first entry is the
program connection itself. The other entries are a list
of the attached nodes.

As in JMRI, open the node you choose to configure by
expanding its tree view.

 I created the next slide back in 2017. I include it here for a little
bit of perspective.

The Future of LCC

 Current configuration tools are still under development. One
design target is to eliminate any reference to the actual
EventID numbers, and simply use the users own names for
items.

 I am not optimistic about seeing that in my lifetime, but once a
line is configured you really can ignore the details of each
EventID because you will not need to worry about any
duplication, and you do not need to know them ahead of time
to properly select the hardware like you do on existing
networks. In LCC the hardware either offers you a new
unused Event, or you may configure it to respond to your
own already defined Events. (just copy your EventID to it)

 Look carefully at a current configuration presentation. Fortunately I
have apparently outlived my pessimistic prediction.

The Future of LCC

Acknowledgements

Key OpenLCB Contributors: Bob Jacobsen, Alex
Shepherd, David Harris, Stuart Baker, Balazs Racz, Jim
Kueneman, Don Goodman-Wilson, John Plocher

Developer Group

10 to 15 actively working on code at any time
25 to 50 regular contributors and supporters
Many of the same people as supporting JMRI

OpenLCB User Group

Started November 2009
July 2019 we had over 290 members

NMRA liaison: Stephen Priest
NMRA w.g. chairman: Karl Kobel

Info
Users Groups:

https://groups.io/g/openlcb
https://groups.io/g/layoutcommandcontrol

To Join: openlcb+subscribe@groups.io
layoutcommandcontrol+subscribe@groups.io

Useful Links:

http://openlcb.org or http://openlcb.com

http://nmra.org, choose S&RP scroll to 9.7

Book: Introduction to Layout Command Control
 by Dana Zimmerli PhD

Questions

 ?

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 14
	Slide 15
	Slide 16
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 38
	Slide 39
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61
	Slide 62
	Slide 63
	Slide 65
	Slide 66
	Slide 68
	Slide 69
	Slide 70
	Slide 85
	Slide 90
	Slide 93
	Slide 95
	Slide 100
	Slide 101
	Slide 102
	Slide 105
	Slide 106
	Slide 107

